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LETTER TO THE EDITOR 

Scattering of charged particles off dyons 

Ivailo M Mladenov 
Central Laboratory of Biophysics, Bulgarian Academy of Sciences, B1.21, 11 13, Bulgaria 

Received 15 September 1987, in final form 30 October 1987 

Abstract. A recently developed group theoretical approach to scattering is applied to the 
modified Coulomb problem and thus by a purely algebraic manipulation the S matrix is 
derived. 

Recent works by Alhassid et a1 (1983), Frank and Wolf (1984), Wu et a1 (1987) and 
the earlier paper of Barut and Kleinert (1967) have proved that, within the algebraic 
approach, the non-compact Lie groups can be as useful in describing scattering 
processes as the compact Lie groups have been in the treatment of bound-state problems. 
Such a possibility arises whenever the physical problem exhibits dynamical symmetry 
described by a Lie group G.  In this case the scattering matrix S can be computed in 
a purely algebraic way by expanding the representations of G (describing the system 
in the presence of interactions) into representations of the group F (called the free or 
asymptotic group) describing the system in the absence of interactions (Iachello 1986). 

Representations of G = (S-matrix) x representations of F. The process by means of 
which one goes from G to F is the contraction of the Lie group G .  In the algebraic 
approach to scattering it is followed by an inverse process called an extension or 
Euclidean connection which amounts to the expansion of the generators of G into the 
enveloping algebra of F. 

It is our purpose in this letter to apply this programme to the non-relativistic 
scattering of charged particles off a dyon (a particle which has both electric and 
magnetic charge) whose field is supplemented by a centrifugal potential. 

More precisely, we consider the classical Hamiltonian system, ( M ,  U,, H,) where 

M = T+R3 = { ( x ,  p )  E R 3  x R 3 ;  x # 0) 

McIntosh and Cisneros (1970), and later Iwai and Uwano (1986), have proved this 
system to possess higher (dynamic) symmetry than the obvious geometric symmetry. 
Namely, they found that under Poisson brackets 

J l  = x2P3 - x3P2 + pxl / r 

J Z  = X s P 1 -  X l P S  + G 2 /  r 

J3 = X I P 2  - X 2 P l +  p x s / r  

Qi = J ~ P ,  - J ~ P Z  + ax i l  r 

9 2  = J S P ~  - J iPs  + ax21 r 

Q s =  J i ~ z - J . 7 ~ 1  + a x , / r  

( 2 )  
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are generators of symmetries of the Hamiltonian H,, i.e. 

{ J , ,  Hpl, = { Q I ,  H,}, = o  i = l , 2 , 3  (3) 

{JI, 41, = -&r,kJk {Jl, Q,}, = -ElrkQk (91, Q,>, = 2 H F E g k J k *  (4) 

which span the Lie algebra 

It turns out that it is isomorphic to one of the Lie algebras of the Lie groups S0(4 ) ,  
E(3) or S O ( 3 , l )  and this depends on whether the fixed value E of H ,  is smaller than, 
equal to or greater than zero. A situation quite analogous to that arises in a many-body 
context (Solomon 1971) where the potential’s change of sign switches from SU(2) to 
SU( 1 , l ) .  As far as we are concerned with scattering states E = $k2> 0 we can introduce 
K ,  = Q,/m and write down the quantum analogues of (4) (via commutators) to 
arrive at the Lie algebra of the Lorentz group: 

[JI, 41 = i & y k J k  [JI, 41 = iEgkKk [KI, Kj1 = -i&ykJk. 
Their irreducible representations (cf Naimark 1964) are labelled by the pairs (s, c) 
connected with the values of Casimir invariants 

c,= J ~ - K ~ = ~ ~ + ~ ~ - ~  

C, = J .  K = isc 2s E z, c E c. 
In our case C,  = p2  - a’/ k’ - 1 and C2 = ap/  k specify the equivalent representations 
( p ,  -icu/k), ( -p ,  i a / k )  of the so-called principal series of U I R  of the Lorentz group. 
For defineteness we shall work further with the representation (p ,  ip)p = - a / k  suppos- 
ing that p > 0. The action of generators of the Lorentz group on the basis i lm) of the 
Hilbert space of the representation (p,  ip) is given in table 1 .  

Table 1. 

The general procedure for the contraction of a non-compact, connected semisimple 
Lie group G with a maximal compact subgroup M goes as follows. First, fix a Cartan 
decomposition of the Lie algebra of the Lie group G 8; = m 0 k, where m is the Lie 
algebra of M and [ m ,  k] = k, [ k, k] c m. Second, the contraction in the sense of Inonii 
and Winger is a limiting process: m + m, k + p = Ek, where E + 0. So in this manner 
one arrives at the new algebraf= m Op with [ m, p ]  c p and [ p ,  p ]  = 0. The correspond- 
ing Lie group F is a semidirect product of its subgroups M and P, i.e. F =  [PIM, P 
being an invariant subgroup in F. In our case the contraction of S O ( 3 , l )  with respect 
to SO(3) obviously gives the group E(3). The generators of the latter act in the same 



Letter to the Editor L3 

Hilbert space, the only difference being the exchange of the generators K ,  and 
coefficients C,, D, with Pi, Cl, 0;: 

c; = - p ( E p ) / l ( / +  1) 0; = i[(I2-p2)(E2i2+ ~ * p ~ ) / ( 4 1 ~ -  1)]”*/Z. ( 5 )  

In order to fall among the principal series of U I R  of the Euclidian group the limit must 
be taken with care. Because if we let E go to zero keeping p and p fixed, then C ;  and 
Di tend to zero with E and we get a representation which is reducible into the 
representations 1 = p, 1 = p + 1, . . . of the rotation algebra. The other possibility, as 
pointed out by Voisin (1967), is to let p go to * infinity (strong coupling (Y + TOO) in 
such a way that 

lim ~ p = x  
p-*m 

F‘O 

with x a fixed finite number. For physical reasons we choose x = *k(E = F k 2 / a )  and 
then 

C f = * k p / 1 ( 1 + 1 )  D f =  - k [ ( 1 2 - p 2 ) / ( 4 1 2 -  1)]”*/1 (7) 

defines the * k representations of the Euclidean group. In the contraction process the 
so(3, l )  Casimir invariants become the Casimir invariants of e(3) 

C t  = p2 = k2 C ’ -  2 -  - J *  P =  f k p .  (8) 

From the group theoretical point of view p has an interpretation as ‘spin’ or ‘helicity’ 
within the Lorentz or Euclidean groups, respectively. Thus, the scattering may be seen 
as a helicity-flip process. A more precise discussion of this point can be found in 
Elliott and Dawber (1979). 

The reverse concept of contraction-expansion (Rosen 1966), extension 
(Sankaranarayanan 1968) or Euclidean connection (Alhassid et a1 1986) is a powerful 
technique which, applied in a systematic fashion, can be useful in much more general 
scattering problems. Here we shall need only the asymptotic expansion of Ki written 
in terms of the generators of E(3) as 

K,=FAP,-i[P,F(P,J3- P J , ) l / k  

K 3  = *AP3 + i[ - P3 + (P+J- - P - J + ) / 2 ] /  k. 
(9) 

The sign before A in K 3  depends on whether we work in the + k  or - k  representation 
of E(3). More details can be found in Frank et a1 (1986). 

On the other hand, the value of the variable parameter A is fixed by the requirement 
that the operators from (9) define (asymptotically) the representation (p ,  ip) of the 
Lorentz group. This is achieved when A is chosen to be p /  k. 

Acting on both sides of 

IP, I*., 4 m> = A,(k)I -k ,  4 m>+ B/(k)Ik,  I*., 4 m> (10) 

with K 3  we get the recursion relations for the reflection amplitude RI( k )  = B,( k ) / A , (  k )  
in the form 
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From these, for the scattering matrix S,(k) = exp[i(l+ l).rr]R,(k) one obtains 

r ( l + l + i a / k )  
r ( l+  1 -icu/k) 

l s p ,  S,(k)  = 

The cross section arising from (1 1) is given by 

where 

f(k,  6 )= (2 ik ) - '  1 (2l+1)(SI(k)-1)d!,+ (e).  
I Z / l  

Inserting the last expression into (13) finally produces the differential cross section 

d a  a 2 + p 2 k 2  
d f l -  k4 sin4 $0 
-- 

which has identical angular dependence as the classical result of Rutherford. 
Working on an apparently different problem-the scattering of Bogomolny-Prasad- 

Sommerfeld monopoles-Gibbons and Manton (1986) and Feher and  Horvathy (1987) 
arrived nevertheless at very similar results. 

This work was partially supported by contract 330/87 of the Committee for Science. 
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